Chemical SciencesWordPress

Henry Rzepa's Blog

Henry Rzepa's Blog
Chemistry with a twist
Home PageAtom Feed
language
Published

Calicheamicin was noted in the previous post as a natural product with antitumour properties and having many weird structural features such as  an unusual “enedidyne” motif. The representation is shown below. A partial structure shown below for Calicheamicin replaces the -(CH 2 )4- substructure with a four carbon chain that includes two sp 2 centres instead of two sp 3 centres.

Published

Calicheamicin is a natural product with antitumour properties discovered in the 1980s, with the structure shown below. As noted elsewhere, this structure has many weird properties, including amongst other features an unusual “enedidyne” motif and the presence of an iodo group on an aromatic ring.

Published

The Masamune-Bergman reaction[cite]10.1039/C29710001516[/cite],[cite]10.1021/ja00757a071[/cite] is an example of  a highly unusual class of chemical mechanism[cite]10.1021/cr4000682[/cite] involving the presumed formation of the biradical species shown as Int1 below by cyclisation of a cycloenediyne reactant. Such a species is  so reactive that it will be quickly trapped, as for example by dihydrobenzene to form

Published

Metadata is something that goes on behind the scenes and is rarely of concern to either author or readers of scientific articles. Here I tell a story where it has rather greater exposure. For journals in science and chemistry, each article published has a corresponding metadata record, associated with the persistent identifier of the article and known to most as its DOI.

Published

Chemists now use the term “curly arrows” as a language to describe the electronic rearrangements that occur when a (predominately organic) molecule transforms to another – the so called chemical reaction. It is also used to infer, via valence bond or resonance theory, what the mechanistic implications of that reaction are.

Published

What constitutes an “impossible molecule”? Well, here are two, the first being the topic of a recent article[cite]10.1021/jacs.4c02637[/cite]. The second is a favourite of organic chemistry tutors, to see if their students recognise it as an unusual (= impossible) form of a much better known molecule. Perhaps we could define impossible molecules into two slightly different classes.