Rogue Scholar Beiträge

language
Veröffentlicht in Henry Rzepa's Blog

WATOC 2020 was just held in 2022 in Vancouver Canada, over one week. With many lectures held in parallel, it is not possible for one person to cover anything like the topics presented, so this is a personal view of some of those talks that I attended. As happens with many such events, common themes gradually emerge and here I highlight just two that struck me as important for the future of computational chemistry.

ChemieEnglisch
Veröffentlicht in Corin Wagen

This thesis, from Christian Sailer at Ludwig Maximilian University in Munich, is one of the most exciting studies I’ve read this year. Sailer and coworkers are able to generate benzhydryl carbocations from photolysis of the corresponding phosphonium salts, and can monitor their formation and lifetime via femtosecond transient absorption spectroscopy.

Veröffentlicht in Henry Rzepa's Blog

I have long been fascinated by polymers of either carbon dioxide, or carbon monoxide, or combinations of both. One such molecule, referred to as dioxane tetraketone when it was featured on the ACS molecule-of-the-week site and also known as the anhydride of oxalic acid, or more formally 1,4-dioxane-2,3,5,6-tetraone, has been speculated upon for more than a century.[cite]10.1002/cber.19080410335[/cite] The history of

Veröffentlicht in Henry Rzepa's Blog

Minds (and memories) can work in wonderful ways. In 1987[cite]10.1021/jo00389a050[/cite] we were looking at the properties of “stable” tetrahedral intermediates formed in carbonyl group reactions. The reaction involved adding phenylhydroxylamine to acetyl cyanide.

Veröffentlicht in Henry Rzepa's Blog

Previously, I explored the unusual structure of a molecule with a hydrogen bonded interaction between a phenol and a pyridine. The crystal structure name was RAKQOJ and it had been reported as having almost symmetrical N…H…O hydrogen bonds. This feature had been determined using neutron diffraction crystallography, which is thought very reliable at determining proton positions.

Veröffentlicht in Henry Rzepa's Blog

The previous examples of four atom systems displaying two layers of aromaticity illustrated how 4 (B 4 ), 8 (C 4 ) and 12 (N 4 ) valence electrons were partitioned into 4n+2 manifolds (respectively 2+2, 6+2 and 6+6). The triplet state molecule B 2 C 2 with 6 electrons partitioned into 2π and 4σ electrons, with the latter following Baird’s aromaticity