Rogue Scholar Beiträge

language
Veröffentlicht in Henry Rzepa's Blog

It is not only the non-classical norbornyl cation that has proved controversial in the past. A colleague mentioned at lunch (thanks Paul!) that tri-coordinate group 14 cations such as R 3 Si + have also had an interesting history.[cite]10.1021/ja990389u[/cite] Here I take a brief look at some of these systems. Their initial characterisations, as with the carbon analogues, was by 29 Si NMR.

Veröffentlicht in Henry Rzepa's Blog

The Wikipedia entry on peroxydisulfate is quite short (as of today). But I suspect this article may change things.[cite]10.1038/s41559-017-0083[/cite]. A search of the Cambridge structure database reveals around 18 high quality crystal structures containing this species are known, many as metal salts.

Veröffentlicht in Henry Rzepa's Blog

A pyrophoric metal is one that burns spontaneously in oxygen; I came across this phenomenon as a teenager doing experiments at home. Pyrophoric iron for example is prepared by heating anhydrous iron (II) oxalate in a sealed test tube ( i.e. to 600° or higher). When the tube is broken open and the contents released, a shower of sparks forms. Not all metals do this;

Veröffentlicht in Henry Rzepa's Blog

A few years back, I did a post about the Pirkle reagent[cite]10.1039/c39910000765[/cite] and the unusual π-facial hydrogen bonding structure[cite]10.1039/P29940000703[/cite] it exhibits. For the Pirkle reagent, this bonding manifests as a close contact between the acidic OH hydrogen and the edge of a phenyl ring; the hydrogen bond is off-centre from the middle of the aryl ring.

Veröffentlicht in Henry Rzepa's Blog

Cyclobutadiene is one of those small iconic molecules, the transience and instability of which was explained theoretically long before it was actually detected in 1965.[cite]10.1021/ja01092a049[/cite] Given that instability, I was intrigued as to how many crystal structures might have been reported for this ring system, along with the rather more stable congener cyclo-octatetraene. Here is what I found.

Veröffentlicht in Henry Rzepa's Blog

On February 6th I was alerted to this intriguing article[cite]10.1038/nchem.2716[/cite] by a phone call, made 55 minutes before the article embargo was due to be released. Gizmodo wanted to know if I could provide an (almost) instant quote. After a few days, this report of a stable compound of helium and sodium still seems impressive to me and I now impart a few more thoughts here.

Veröffentlicht in Henry Rzepa's Blog

I am completing my survey of the vote for molecule of the year candidates, which this year seems focused on chemical records of one type or another. The first article[cite]10.1002/chem.201601916[/cite] reports striving towards creating a molecule covering a complete column of the period table.

Veröffentlicht in Henry Rzepa's Blog

Here is a third candidate for the C&EN “molecule of the year” vote. This one was shortlisted because it is the first example of a metal-nitrogen complex exhibiting single, double and triple bonds from different nitrogens to the same metal[cite]10.1039/c5sc04608d[/cite] (XUZLUB has a 3D display available at DOI: 10.5517/CC1JYY6M). Since no calculation of its molecular properties was reported, I annotate some here.

Veröffentlicht in Henry Rzepa's Blog

Chemical and engineering news (C&EN) is asking people to vote for their molecule of the year from six highlighted candidates. This reminded me of the history of internet-based “ molecules of the moment “. It is thought that the concept originated in December 1995 here at Imperial and in January 1996 at Bristol University by Paul May and we were joined by Karl Harrison at Oxford shortly thereafter.