Publicaciones de Rogue Scholar

language
Publicado in Henry Rzepa's Blog

Another selection (based on my interests, I have to repeat) from WATOC 2017 in Munich. Odile Eisenstein gave a talk about predicted 13 C chemical shifts in transition metal (and often transient) complexes, with the focus on metallacyclobutanes. These calculations include full spin-orbit/relativistic corrections, essential when the carbon is attached to an even slightly relativistic element.

Publicado in Henry Rzepa's Blog

About 18 months ago, there was much discussion on this blog about a system reported by Bob Pascal and co-workers containing a short H…H contact of ~1.5Å[cite]10.1021/ja407398w[/cite]. In this system, the hydrogens were both attached to Si as Si-H…H-Si and compressed together by rings.

Publicado in Henry Rzepa's Blog

Here is a third candidate for the C&EN “molecule of the year” vote. This one was shortlisted because it is the first example of a metal-nitrogen complex exhibiting single, double and triple bonds from different nitrogens to the same metal[cite]10.1039/c5sc04608d[/cite] (XUZLUB has a 3D display available at DOI: 10.5517/CC1JYY6M). Since no calculation of its molecular properties was reported, I annotate some here.

Publicado in Henry Rzepa's Blog

Chloroform, often in the deuterated form CDCl 3 , is a very common solvent for NMR and other types of spectroscopy. Quantum mechanics is increasingly used to calculate such spectra to aid assignment and the solvent is here normally simulated as a continuum rather than by explicit inclusion of one or more chloroform molecules. But what are the features of the hydrogen bonds that form from chloroform to other acceptors?

Publicado in Henry Rzepa's Blog

The 1 H NMR spectrum of an aromatic molecule such as benzene is iconic; one learns that the unusual chemical shift of the protons (~δ 7-8 ppm) is due to their deshielding by a diatropic ring current resulting from the circulation of six aromatic π-electrons following the Hückel 4n+2 rule.

Publicado in Henry Rzepa's Blog

n-Butyl lithium is hexameric in the solid state[cite]10.1002/anie.199305801[/cite] and in cyclohexane solutions. Why? Here I try to find out some of its secrets. SUHBEC. CLICK FOR 3D. The crystal structure reveals the following points of interest: Six lithium atoms form a cluster with triangular faces. An off-centre carbanion caps a triangular lithium face.

Publicado in Henry Rzepa's Blog

Computers and I go back a while (44 years to be precise), and it struck me (with some horror) that I have been around them for ~62% of the modern computing era (Babbage notwithstanding, ~1940 is normally taken as the start of the modern computing era). So indulge me whilst I record this perspective from the viewpoint of the computers I have used over this 62% of the computing era.

Publicado in Henry Rzepa's Blog

In 1988, Wilke[cite]10.1002/anie.198801851[/cite] reported molecule 1 It was a highly unexpected outcome of a nickel-catalyzed reaction and was described as a 24-annulene with an unusual 3D shape. Little attention has been paid to this molecule since its original report, but the focus has now returned!