MatematicaInglese
Pubblicato in Math ∩ Programming
Autore Jeremy Kun

Problem: Derive the double angle identities $$\sin(2\theta) = 2\sin(\theta)\cos(\theta)\\ \cos(2\theta) = \cos^2(\theta) – \sin^2(\theta)$$ Solution: Recall from linear algebra how one rotates a point in the plane. The matrix of rotation (derived by seeing where $ (1,0)$ and $ (0,1)$ go under a rotation by $ \theta$, and writing those coordinates in the columns) is $$A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) &