Messaggi di Rogue Scholar

language
Pubblicato in Stories by Research Graph on Medium

A Unified and Collaborative Framework for LLM Author · Qingqin Fang ( ORCID: 0009–0003–5348–4264) Introduction In today’s rapidly evolving field of artificial intelligence, large language models (LLMs) are demonstrating unprecedented potential. Particularly, the Retrieval-Augmented Generation (RAG) architecture has become a hot topic in AI technology due to its unique technical capabilities.

Pubblicato in Stories by Research Graph on Medium
Autore Wenyi Pi

Exploring innovative Strategies in Combating Misinformation with Enhanced Multimodal Understanding Author Wenyi Pi ( ORCID : 0009–0002–2884–2771) Introduction Misinformation refers to false or inaccurate information that is often given to someone in a deliberate attempt to make them believe something that is not true. This has a significantly negative impact on public health, political stability and social trust and harmony.

Pubblicato in Stories by Research Graph on Medium
Autore Xuzeng He

Latest effort in assessing the security of the code generated by large language models Author · Xuzeng He ( ORCID: 0009–0005–7317–7426) Introduction With the surge of Large Language Models (LLMs) nowadays, there is a rising trend among developers to use Large Language Models to assist their daily code writing. Famous products include GitHub Copilot or simply ChatGPT.

Pubblicato in quantixed

Previously, I took advantage of a dataset that linked preprints to their published counterparts to look at the fraction of papers in a journal that are preprinted. This linkage can be used to answer other interesting questions. Such as: when do authors preprint their papers relative to submission? And does this differ by journal? There’s a bit of preamble. If you just want to know the answer, click here.

Pubblicato in Stories by Research Graph on Medium
Autore Xuzeng He

Latest findings in pre-training graphs and using them for link recommendation Author · Xuzeng He ( ORCID: 0009–0005–7317–7426) Introduction A graph, in short, is a description of items linked by relations, where the items of a graph are called nodes (or vertices) and their relations are called edges (or links). Examples of graphs can include social networks (e.g. Instagram) or knowledge graphs (e.g. Wikipedia). In Instagram

Pubblicato in Stories by Research Graph on Medium

Exploring the Potential of Temporal Feature-Logic Embedding (TFLEX) in Complex Query Resolution Author · Vaibhav Khobragade ( ORCID: 0009–0009–8807–5982) Introduction Artificial intelligence (AI) and knowledge representation in the field of temporal knowledge graphs are rapidly gaining interest.

Pubblicato in Stories by Research Graph on Medium

Understanding the Balance between Internal Knowledge and External Sources Author Qingqin Fang ( ORCID: 0009–0003–5348–4264) Introduction Previous research often emphasized the limitations of LLM’s information acquisition pathways, focusing on enhancing its capabilities in this regard.