Messaggi di Rogue Scholar

language
MatematicaInglese
Pubblicato in Math ∩ Programming
Autore Jeremy Kun

Problem: $ \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1$ Solution: Problem: $ \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots = \frac{1}{2}$ Solution: Problem: $ \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots = \frac{1}{3}$ Solution: Problem: $ 1 + r + r^2 + \dots = \frac{1}{1-r}$ if $ r < 1$. Solution: This last one follows from similarity of the subsequent trapezoids: the right edge of the teal(ish) trapezoid has length $ r$, and

MatematicaInglese
Pubblicato in Math ∩ Programming
Autore Jeremy Kun

The first step in studying the sorts of possible computations (and more interestingly, those things which cannot be computed) is to define exactly what we mean by a “computation.” At a high level, this is easy: a computation is simply a function. Given some input, produce the appropriate output. Unfortunately this is much too general. For instance, we could define almost anything we want in terms of functions.

MatematicaInglese
Pubblicato in Math ∩ Programming
Autore Jeremy Kun

Problem: Prove that for all $ n,k \in \mathbb{N}, k > 1$, we have $$\sum \limits_^{n} k^i = \frac{k^{n+1}-1}{k-1}$$ Solution: Representing the numbers in base $ k$, we have that each term of the sum is all 0’s except for a 1 in the $ i$th place. Hence, the sum of all terms is the $ n$-digit number comprised of all 1’s. Multiplying by $ k-1$ gives us the $ n$-digit number where every digit is $ k-1$.

MatematicaInglese
Pubblicato in Math ∩ Programming
Autore Jeremy Kun

Additional Patterns Last time we left the reader with the assertion that Conway’s game of life does not always stabilize. Specifically, there exist patterns which result in unbounded cell population growth. Although John Conway’s original conjecture was that all patterns eventually stabilize (and offered $50 to anyone who could provide a proof or counterexample), he was proven wrong.

MatematicaInglese
Pubblicato in Math ∩ Programming
Autore Jeremy Kun

There is a long history of mathematical models for computation. One very important one is the Turing Machine, which is the foundation of our implementations of actual computers today. On the other end of the spectrum, one of the simpler models of computation (often simply called a system) is a cellular automaton. Surprisingly enough, there are deep connections between the two.

MatematicaInglese
Pubblicato in Math ∩ Programming
Autore Jeremy Kun

Problem: Take a chessboard and cut off two opposite corners. Is it possible to completely tile the remaining board with 2-by-1 dominoes? Solution: Notice that every domino covers exactly one white tile and one black tile. Counting up the colors, we have 32 white and 30 black. Hence, any tiling by 2-by-1 dominoes will leave two extra white squares unaccounted for. So no such tiling is possible. Problem: Cut one corner off a chessboard.

MatematicaInglese
Pubblicato in Math ∩ Programming
Autore Jeremy Kun

Problem: What is the area of the triangle within the rectangle? Solution: In a moment of inspiration, we draw the following additional line: Now the answer is obvious. Once we split the rectangle into two smaller rectangles, the sides of the triangle become diagonals of their respective rectangles. The diagonals obviously split each of the two smaller rectangles into halves, where one half lies inside our original triangle.