Messaggi di Rogue Scholar

language
Pubblicato in Triton Station

I have said I wasn’t going to attempt to teach an entire graduate course on galaxy dynamics in this forum, and I’m not. But I can give some pointers for those who want to try it for themselves. It also provides some useful context for fans of Deur’s approach. The go-to textbook for this topic is Galactic Dynamics by Binney & Tremaine. The first edition was published in 1987, conveniently when I switched to grad school in astronomy.

Pubblicato in Triton Station

Last time, we discussed the remarkable result that gravitational lensing extends the original remarkable result of flat rotation curves much farther out, as far as the data credibly probe. This corroborates and extends the result of Brouwer et al. They did a thorough job, but one thing they did not consider was Tully-Fisher.

Pubblicato in Triton Station

That rotation curves become flat at large radii is one of the most famous results in extragalactic astronomy. This had been established by Vera Rubin and her collaborators by the late 1970s. There were a few earlier anecdotal cases to this effect, but these seemed like mild curiosities until Rubin showed that the same thing was true over and over again for a hundred spiral galaxies.

Pubblicato in Triton Station

Yes, some. That much is a step forward from a decade ago, when a common assumption was that the Milky Way’s rotation curve remained flat at the speed at which the sun orbited. This was a good guess based on empirical experience with other galaxies, but not all galaxies have rotation curves that are completely flat, nor can we be sure the sun is located where that is the case.

Pubblicato in Triton Station

I recently traveled to my first international meeting since the Covid pandemic began. It was good to be out in the world again. It also served as an excellent reminder of the importance of in-person interactions. On-line interactions are not an adequate substitute. I’d like to be able to recount all that I learned there, but it is too much. This post will touch on one of the much-discussed topics, our own Milky Way Galaxy.

Pubblicato in Triton Station

There is a rule of thumb in scientific publication that if a title is posed a question, the answer is no. It sucks being so far ahead of the field that I get to watch people repeat the mistakes I made (or almost made) and warned against long ago. There have been persistent claims of deviations of one sort or another from the Baryonic Tully-Fisher relation (BTFR). So far, these have all been obviously wrong, for reasons we’ve discussed before.

Pubblicato in Triton Station

In science, all new and startling facts must encounter in sequence the responses 1. It is not true! 2. It is contrary to orthodoxy. 3. We knew it all along. Louis Agassiz (circa 1861) This expression exactly depicts the progression of the radial acceleration relation.

Pubblicato in Triton Station

We have a new paper on the arXiv. This is a straightforward empiricist’s paper that provides a reality check on the calibration of the Baryonic Tully-Fisher relation (BTFR) and the distance scale using well-known Local Group galaxies. It also connects observable velocity measures in rotating and pressure supported dwarf galaxies: the flat rotation speed of disks is basically twice the line-of-sight velocity dispersion of dwarf spheroidals.

Pubblicato in Triton Station

This title is an example of what has come to be called Betteridge’s law. This is a relatively recent name for an old phenomenon: if a title is posed as a question, the answer is no . This is especially true in science, whether the authors are conscious of it or not. Pengfei Li completed his Ph.D. recently, fitting all manner of dark matter halos as well as the radial acceleration relation (RAR) to galaxies in the SPARC database.

Pubblicato in Triton Station

The Milky Way Galaxy in which we live seems to be a normal spiral galaxy. But it can be hard to tell. Our perspective from within it precludes a “face-on” view like the picture above, which combines some real data with a lot of artistic liberty. Some local details we can measure in extraordinary detail, but the big picture is hard. Just how big is the Milky Way?