Messaggi di Rogue Scholar

language
Pubblicato in Henry Rzepa's Blog

Another foray into one of the more famous anecdotal chemistry “models”, the analysis of which led directly to the formulation of the WoodWard-Hoffmann (stereochemical) rules for pericyclic reactions.

Pubblicato in Henry Rzepa's Blog

The quote of the post title comes from R. B. Woodward explaining the genesis of the discovery of what are now known as the Woodward-Hoffmann rules for pericyclic reactions.[cite]10.1021/ja01080a054[/cite] I first wrote about this in 2012, noting that “*for (that) blog, I do not want to investigate the transition states”.* Here I take a closer look at this aspect. I will start by explaining my then reluctance to discuss transition states.

Pubblicato in Henry Rzepa's Blog

I occasionally spot an old blog that emerges, if only briefly, as “trending”. In this instance, only the second blog I ever wrote here, way back in 2009 as a follow up to this article.[cite]10.1021/ed084p1535[/cite] With something of that age, its always worth revisiting to see if any aspect needs updating or expanding, given the uptick in interest.

Pubblicato in Henry Rzepa's Blog

I noted in my WATOC conference report a presentation describing the use of calculated reaction barriers (and derived rate constants) as mechanistic reality checks. Computations, it was claimed, have now reached a level of accuracy whereby a barrier calculated as being 6 kcal/mol too high can start ringing mechanistic alarm bells.

Pubblicato in Henry Rzepa's Blog

In the previous posts, I explored reactions which can be flipped between two potential (stereochemical) outcomes. This triggered a memory from Alex, who pointed out this article from 1999[cite]10.1070/MC1999v009n02ABEH000995[/cite] in which the nitrosonium cation as an electrophile can have two outcomes A or B when interacting with the electron-rich 2,3-dimethyl-2-butene.

Pubblicato in Henry Rzepa's Blog

This post, the fifth in the series, comes full circle. I started off by speculating how to invert the stereochemical outcome of an electrocyclic reaction by inverting a bond polarity. This led to finding transition states for BOTH outcomes with suitable substitution, and then seeking other examples.

Pubblicato in Henry Rzepa's Blog

One thing leads to another. Thus in the previous post, I described a thermal pericyclic reaction that appears to exhibit two transition states resulting in two different stereochemical outcomes.

Pubblicato in Henry Rzepa's Blog

In my earlier post on the topic, I discussed how inverting the polarity of the C-X bond from X=O to X=Be could flip the stereochemical course of the electrocyclic pericyclic reaction of a divinyl system. An obvious question would be: what happens at the half way stage, ie X=CH 2 ? Well, here is the answer.