Postagens de Rogue Scholar

language
Publicados in Henry Rzepa's Blog

Here is another of the “large” molecules in the c&e news shortlist for molecule-of-the-year, 2020. This one is testing the Hückel 4n+2 rule out to a value never before seen (n = 40, or 162 π-electrons).[cite]10.1038/s41557-019-0398-3[/cite] The take-home message is that this rule seems to behave well in predicting global aromaticity even at this sort of scale!

Publicados in Henry Rzepa's Blog

The title derives from an article[cite]10.1038/s41586-020-2614-0[/cite] which was shortlisted for the annual c&en molecule of the year 2020 awards (and which I occasionally cover here). In fact this year’s overall theme is certainly large molecules, the one exception being a smaller molecule with a quadruple bond to boron, a theme I have already covered here.

Publicados in Henry Rzepa's Blog

I asked the question in my previous post. A computational mechanism revealed that AlCl 3 or its dimer Al 2 Cl 6 could catalyse a concerted 1,1-substitution reaction at the carbon of Cl-C≡N, with benzene displacing chloride which is in turn captured by the Al. Unfortunately the calculated barrier for this simple process was too high for a reaction apparently occuring at ~room temperatures.

Publicados in Henry Rzepa's Blog

In 2010 I recounted the story of an organic chemistry tutorial, in which I asked the students the question “ how would you synthesize 3-nitrobenzonitrile ”. The expected answer was to generate a nitronium ion to nitrate benzonitrile, but can one invert this by generating a C⩸N + ion to cyanate nitrobenzene?

Publicados in Henry Rzepa's Blog

Cyclopropenylidene must be the smallest molecule to be aromatic due to π-electrons, with just three carbon atoms and two hydrogen atoms. It has now been detected in the atmosphere of Titan, one of Saturn’s moons[cite]10.3847/1538-3881/abb679[/cite] and joins benzene, another aromatic molecule together with the protonated version of cyclopropenylidene, C 3 H 3 + also found there.

Publicados in Henry Rzepa's Blog

Way back in 2010, I was writing about an experience I had just had during an organic chemistry tutorial, which morphed into speculation as to whether a carbon atom might sustain a quadruple bond to nitrogen. A decade on, and possibly approaching 100 articles by many authors on the topic, quadruple bonds to carbon continue to fascinate.

Publicados in Henry Rzepa's Blog

In Internet terms, 23 years ago is verging on pre-history. Much of what was happening around 1997 on the Web was still highly experimental and so its worth taking a look at some of this to see how it has survived or whether it can be “curated” into a form that would still be useful.

Publicados in Henry Rzepa's Blog

In an earlier post, I pondered on how the “arrow pushing” for the thermal pericyclic reactions of some annulenes (cyclic conjugated hydrocarbons) could be represented in terms of either two separate electrocyclic reactions or of one cycloaddition reaction.

Publicados in Henry Rzepa's Blog

The title of this post indicates the exciting prospect that a method of producing a room temperature superconductor has finally been achived[cite]10.1038/s41586-020-2801-z[/cite]. This is only possible at enormous pressures however; >267 gigaPascals (GPa) or 2,635,023 atmospheres.

Publicados in Henry Rzepa's Blog

I occasionally spot an old blog that emerges, if only briefly, as “trending”. In this instance, only the second blog I ever wrote here, way back in 2009 as a follow up to this article.[cite]10.1021/ed084p1535[/cite] With something of that age, its always worth revisiting to see if any aspect needs updating or expanding, given the uptick in interest.