Postagens de Rogue Scholar

language
Publicados in Triton Station

In the last post, I noted some of the sociological overtones underpinning attitudes about dark matter and modified gravity theories. I didn’t get as far as the more scientifically  interesting part, which  illustrates a common form of reasoning in physics. About modified gravity theories, Bertone & Tait state Leaving aside just which observations need to be mimicked so precisely (I expect they mean power spectrum;

Publicados in Triton Station

Like the Milky Way, our nearest giant neighbor, Andromeda (aka M31), has several dozen dwarf satellite galaxies. A few of these were known and had measured velocity dispersions at the time of my work with Joe Wolf, as discussed previously. Also like the Milky Way, the number of known objects has grown rapidly in recent years – thanks in this case largely to the PAndAS survey.

Publicados in Triton Station

I have been wanting to write about dwarf satellites for a while, but there is so much to tell that I didn’t think it would fit in one post. I was correct. Indeed, it was worse than I thought, because my own experience with low surface brightness (LSB) galaxies in the field is a necessary part of the context for my perspective on the dwarf satellites of the Local Group.

Publicados in Triton Station

A quick note to put the acceleration discrepancy in perspective. The acceleration discrepancy, as Bekenstein called it, more commonly called the missing mass or dark matter problem, is the deviation of dynamics from those of Newton and Einstein. The quantity D is the amplitude of the discrepancy, basically the ratio of total mass to that which is visible.

Publicados in Triton Station

The Milky Way and its nearest giant neighbor Andromeda (M31) are surrounded by a swarm of dwarf satellite galaxies. Aside from relatively large beasties like the Large Magellanic Cloud or M32, the majority of these are the so-called dwarf spheroidals. There are several dozen examples known around each giant host, like the Fornax dwarf pictured above.

Publicados in Triton Station

The Milky Way Galaxy in which we live seems to be a normal spiral galaxy. But it can be hard to tell. Our perspective from within it precludes a “face-on” view like the picture above, which combines some real data with a lot of artistic liberty. Some local details we can measure in extraordinary detail, but the big picture is hard. Just how big is the Milky Way?

Publicados in Triton Station

There are two basic approaches to cosmology: start at redshift zero and work outwards in space, or start at the beginning of time and work forward. The latter approach is generally favored by theorists, as much of the physics of the early universe follows a “clean” thermal progression, cooling adiabatically as it expands.

Publicados in Triton Station

As soon as I wrote it, I realized that the title is much more general than anything that can be fit in a blog post. Bekenstein argued long ago that the missing mass problem should instead be called the acceleration discrepancy, because that’s what it is – a discrepancy that occurs in conventional dynamics at a particular acceleration scale. So in that sense, it is the entire history of dark matter.

Publicados in Triton Station

One experience I’ve frequently had in Astronomy is that there is no result so obvious that someone won’t claim the exact opposite. Indeed, the more obvious the result, the louder the claim to contradict it. This happened today with a new article in Nature Astronomy by Rodrigues, Marra, del Popolo, & Davari titled Absence of a fundamental acceleration scale in galaxies . This title is the opposite of true.